
Task 1: Posting a Malicious Message to Display an Alert Window 

First added both Admin and Charlie as friends. 

 

 

 

Then I edited Charlie’s profile in the brief description session and added the JavaScript code 
which is supposed to generate the alert when any of Charlie’s friends visits his profile. 

 

 

 



Next, I try to check out Charlie’s profile from the Admin’s account. 

 

And there we have it, mission accomplished, alert displayed. 

 

Task 2: Posting a Malicious Message to Display Cookies 

Here, I edited the JavaScript program from task 1. The image below shows it. 

 

 

Again, after attempting to visit Admin’s profile from Charlie’s account, I got cookie displayed in 
an alert window. 



 

 

 

Task 3: Stealing Cookies from the Victim’s Machine 

Here, I will first edit the Brief description field to contain a JavaScript that triggers an HTTP 
request to the attacker, with the cookies appended to the request instead of the cookies being 
displayed to the victim.  

But before accessing the profile, let’s run the netcat program to listen for incoming requests at 
the address: 127.0.0.1:5555 

The image below shows the terminal before the request is sent by accessing Admin’s profile 

 

 

Next, we see the connection information including the cookie being appended just before the 
Host line. 



 

 

Task 4: Becoming the Victim’s Friend 

To understand how to forge HTTP requests from the victim’s browser without the intervention of 
the attacker, let’s examine the parameters sent to the server when a user tries to add a friend. 
For this experiment, I will try adding Charlie as a friend of Boby. See the snapshot below for the 
add friend request and the parameters sent. 

 

 

From the screenshot above, the most important parameters that will be needed for us to 
succeed in our attack are the tokens and the friend id. We need to specify these parameters in 



the HTTP Request that gets sent when the script is run for Samy to be added as a friend of 
whoever visits his page. So let’s see what Samy’s ID is. I did this by using HTTP Header Live to 
capture the login request of Samy and then inspecting the source page to find the 
“owner_guid”:47. Alternatively, I could have found Samy’s ID directly by adding him as 
someone’s friend and checking the parameters for that add friend request. 

 

 

At this point, I modified the sendurl to specify Samy’s ID so that he is added when the attack is 
executed. 



 

 

Next, let’s edit Samy’s profile and paste the script in the About me field: 

 

 

 

With the attack prepared, we’re ready to witness what happens if any of the users try visiting 
Samy’s profile. We expect Samy to be added automatically as a friend to that user. Let’s try with 
Boby and Charlie.  



Below is a screenshot that shows Boby’s current friends prior to the attack (before visiting 
Samy’s profile). Boby’s only friend now is Charlie. 

 

 

And here’s what Boby’s friend list looks like after visiting Samy’s profile. Samy was added 
automatically because of the attack. 

 

 

Same is shown for Charlie below. His only friend was Admin, but Samy got added after Charlie 
visited Samy’s profile. 



 

 
 

NB: I noticed that the attack affected Samy himself, as he has been added as his own friend. 



 

 

1.  

2. The attack will not work if the code is added using the Editor mode, because the extra code 
added makes it not to be rendered as a script and hence converted to Unicode, the reason the 
attack will fail. 

 

Task 5: Modifying the Victim’s Profile 

First, let’s find out how a legitimate user edits his/her profile in Elgg, thus how the POST request 
is constructed.  



 

 

Let’s observe the POST request when the above changes are saved: So aside the timestamp 
and the security token, the guid as well as the description/changes made are all sent as 
parameters to the server. This is very useful information in crafting our script (especially the 
order in which the various parameters are appended in the url) to execute the attack. 

 

 

After observing the capture from the HTTP Header Live, I edited the script as follows: 



 

 

Next, I will edit Samy’s profile by pasting the above code into his About Me field and see if the 
attack works. 

 

 



With the script saved, let’s go ahead and see if anyone who tries to visit Samy’s profile gets 
his/her profile modified. To be specific, let’s check for Charlie. We’re expecting his Brief 
Description to change to “Samy is the BEST!” 

To be sure the attack really works, I first checked Charlie’s profile from Samy’s account, and this 
is what it looked like: 

 

 

And this is what Charlie’s profile looks like after the attack: 

 

 

Question 3: Line ➀ is needed because, without it, the attack affects Samy himself. 



So, with line ➀ commented out, let’s save the changes in Samy’s profile and then see what 

happens. As shown below, Samy’s own Brief Description is modified the moment we save the 

changes. 

 

 

Task 6: Writing a Self-Propagating XSS Worm 

To have the worm self-replicate itself from the first person that visits Samy’s profile to other 
people who visits a victim’s profile, I edited the script from the last attack as shown below: 



 

 

Now let’s copy the above code to Samy’s profile and save it. 



 

 

Next, I will login with Alice’s credential, and she shouldn’t have any friends at first.. 

 

 

From the activity page in Alice’s account, I will try to access Samy’s profile. From there, I go back 
to Alice’s profile, and we should see Samy as a friend and her description should have 
something related to “Samy is the BEST! Self-Replicated..”.  



 

 

Now instead of visiting Samy’s page directly to be infected, I will use Admin’s account to visit 
Alice’s account and the worm should self-replicate, adding Samy as a friend of Admin. 

Admin’s friend list before visiting Alice’s profile: Admin is friends with only Boby and Charlie.  

 

 

Admin’s friend list after visiting Alice’s profile: Samy is now listed. 



 

 

At this point, before continuing to the next task, let’s turn to Elgg’s built-in countermeasures. 
First, let’s activate HTMLawed as shown below: 

 

 

Next, let’s enable another PHP method called \htmlspecialchars() 

 



 

 

Task 7: Defeating XSS Attacks Using CSP 

Below is the python code that we execute to run the web server that sets the Content Security 
Policy. 

 

 

Next, we run the server and check the sample websites running on the server as shown below. 
We realize that some areas are failing because they do not conform to the CSP rules. 



 



From example32.com in the screenshot above, Area 2 is failing because we specified a wrong 
nonce value for the inline scripting. Area 3 fails because no nonce value is specified. Area 6 also 
fails because our server program does not know the website specified as the script source (src 
= http://www.example79.com:8000) 

 

So, to make sure fields 1, 2, 4, 5 and 6 all display OK, I made the following changes to the server 
program as shown in the snapshot below: For field 2, I added the nonce value used to the server 
program, for field 6, I added the website being referenced as a trusted source. 
 

 
 

After the above changes to the server program, fields 1, 2, 4, 5 and 6 all display OK are required. 

http://www.example79.com:8000/


 


